Organic Chemistry I provides information on chemical nomenclature, structure of basic organic skeletons, and their stereochemistry as well as their reactivity. Organic chemistry of the basic hydrocarbon skeletons. The subject of organic chemistry. Chemical bonds and bonding in organic molecules. Hybridization of the carbon atom, bonding energy, bond length, polarity of the chemical bond. Inductive and mesomeric effects on the chemical bonds, conjugation. General criteria of chemical reaction - reaction kinetics, reaction profiles and mechanism. Activation energy and enthalpy of the reaction. Chemical nomenclature. Alkanes and cycloalkanes, their chemical nomenclature. Chain isomerie, conformation analysis of alkanes and cycloalkanes (with stress on cyclohexane ring). Fused cyclic systems. Newmann projection. cis-trans Isomerism of cycloalkanes. Radical reactions as typical reactions of this system. Summary of radical reactions. Optical activity and symmetry of molecules. Chiral molecules, conditions of chirality. Methods of space objects presentation. Enantiomers, optical activity, specific rotation and its measurement, optical purity, racemic mixture. Molecules with more than one stereocenter. Cahn, Ingold, Prelog rules. Nomenclature of enantiomers. Meso compounds. Resolution of enantiomers. Alkenes, stereochemistry of double bond, cis-trans and E-Z nomenclature. Addition reactions, their summary with attention to the stereochemistry and mechanism. Polymerizations. Dienes and polyenes (cumulated, isolated, conjugated). Reactions of conjugated dienes, conditions and mechanism of 1,2- and 1,4-addition. Isoprenoides (monoterpenes, sesquiterpenes, di-, tri- and tetraterpenes, carotenes). Electronic spectra and relation between the structure and its spectrum. Pericyclic reactions - electrocyclic reactions, cycloaddition reactions, the rules of their realization, sigmatropic rearrangements. Akynes and their structure. Properties of the triple bond, addition reactions (electrophilic and nucleophilic additions), acidity of the hydrogen atoms bound on sp- carbon, pK$_a$. The phenomenon of aromaticity and its properties. Nonbenzoid aromates (polycyclic aromates, annulenes, aromatic ions.} Mechanism of aromatic electrophilic substitution. Summary of electrophilic reactions, formation of electrophilic reagents. Effect of substituents on the reactivity and orientation. Hammet equation, sigma and rho constants. Ipso substitution. Nucleophilic substitution on the aromatic ring (SN1, SN2, elimination-addition mechanism). Conditions for addition reactions and reactions of oxidation. Substitution a other reactions on fused aromatic compounds.
|
-
Červinka O. a kol. (1987). Chemie organických sloučenin I, II. SNTL, Praha.
-
Červinka O., Dědek V., Ferles M. (1969). Organická chemie. SNTL, ALFA Bratislava.
-
Červinka O., Dědek V., Ferles M. (1980). Organická chemie. SNTL Praha.
-
Hrnčiar P. (1990). Organická chémia. SPN Bratislava.
-
Kováč J., Kováč Š. (1977). Organická chémia. SPN, Bratislava.
-
Slouka J., Fryšová I., Cankař P. (2010). Průvodce některými úvodními kapitolami organické chemie. Olomouc.
|