Lecturer(s)
|
-
Kvita Jiří, Mgr. Ph.D.
-
Trávníček Petr, RNDr. Ph.D.
|
Course content
|
1. Principle of minimal action, Lagrange and Hamilton equations, relativistic particle, electromagnetic field as infinite degrees system. 2. Symmetries and conservation laws, Noether theorem. 3. Quantization - formulation, normal ordering, Fock space, scalar field, charge, antiparticles, time ordering, Green functions. 4. Quantization of the electromagnetic field. 5. Dirac field. 6. Wick theorem. 7. S-matrix - in/out states, cross section, Dyson series. 8. Applications - phi^4 theory, 9. Feynman diagrams, Yukawa coupling, decays. 9. Quantum electrodynamics - Compton scattering, Bremsstrahlung 10. Renormalization, Standard model as a calibration theory.
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Preparation for the Exam
- 600 hours per semester
|
Learning outcomes
|
Knowledge of university-level physics
|
Prerequisites
|
Knowledge of university-level physics
|
Assessment methods and criteria
|
Oral exam
Knowledge of the problematics in the scope of the lecture
|
Recommended literature
|
-
Weinberg S. The Quantum Theory of Fields, Volume 1: Foundations.
-
Das, A. (2008). Lectures on Quantum Field Theory. World Scientific.
-
Formánek, J. (2000). Úvod do relativistické kvantové mechaniky a kvantové teorie pole. Praha: Karolinum.
-
Itzykson C., Zuber J.-B. Quantum Field Theory.
|