<ol> <li>   Functions of a single real variable ? bounded, monotone, one-to-one functions.          Composite functions, inverse functions. Overview of elementary functions. <li>   Sequences of real numbers ? bounded, monotone sequences.          Limit of a sequence, convergent and divergent sequences;  limes superior, limes inferior . <li>   Limit of a function ? definition, geometrical interpretation, computing rules.          One-sided limits, infinite limits and limits at infinity. <li>   Continuity of functions ? in a point, on an interval; points of discontinuity.          Continuity of composite and inverse functions. <li>   Differentiation ? definition, geometrical meaning, computing rules.          Differentiation of composite and inverse functions.           Differentiation of elementary functions. <li>   Differential of a function, basic theorems of differential calculus.          Graph sketching ? extreme values, convex and concave functions, asymptotes. <li>   Primitive function, table of basic primitive functions.          Computing rules ? per partes, substitutions, integration of rational functions. <li>   Riemann  integral ? definition,  the fundamental theorem of integral calculus.           Integration by parts, substitution methods for computing definite integral. <li>   Geometrical applications of the definite integral ? computing  areas,            length of curves, volumes of bodies. <\lo> 
         
         
     | 
    
        
            
                
                - 
                    Adams R.A. (1991). Calculus: a complete course. Addison-Wesley New York. 
                
 
            
                
                - 
                    Finney R.L., Thomas G.B. (1992). Calculus. Addison-Wesley New York. 
                
 
            
                
                - 
                    Jarník V. (1984). Diferenciální počet I. Akademia Praha. 
                
 
            
                
                - 
                    Jarník V. (1984). Integrální počet I. Academia Praha. 
                
 
            
                
                - 
                    KOPÁČEK J. (2016). Matematická analýza nejen pro fyziky (I). Matfyzpress, Praha. 
                
 
            
                
                - 
                    MÁDROVÁ V., MAREK J. (2013). Sborník úloh z diferenciálního počtu v R: (364 řešených příkladů a 1111 cvičení). Olomouc: Univerzita Palackého v Olomouci. 
                
 
            
                
                - 
                    Míka S., Drábek P. (2003). Matematická analýza II. Západočeská univerzita Plzeň. 
                
 
            
                
                - 
                    MÍKA S.,DRÁBEK P. (2003). Matematická analýza II.. Západočeská univerzita Plzeň. 
                
 
            
                
                - 
                    Schwabik Š.,Šarmanová P. (2000). Malý průvodce historií integrálu. MU Brno. 
                
 
            
                
                - 
                    Škrášek J., Tichý J. (1990). Aplikace matematiky I. a II.. SNTL Praha. 
                
 
            
         
         
         
     |