Course: Dynamical Systems

» List of faculties » PRF » KMA
Course title Dynamical Systems
Course code KMA/PGSM3
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Andres Jan, prof. RNDr. dr hab. DSc.
  • Tomeček Jan, doc. RNDr. Ph.D.
  • Rachůnková Irena, prof. RNDr. DrSc.
Course content
Autonomous differential equations and dynamical systems. Linear systems, canonic forms, phase portraits, stability, topological equivalence. Nonlinear systems: Hyperbolic and non-hyperbolic critical points. Linearization, Stability, Bifurcations, Central manifolds. Limit sets and attractors. Periodic orbits, limit cycles. Bifurcations. Poincare mapping. The Poincare-Bendixon Theorem. Homoclinic and heteroclinic points, chaos. The Sharkovskii Theorem, the Melnikoff function, shadowing lemma.

Learning activities and teaching methods
unspecified
Learning outcomes
Prerequisites
unspecified

Assessment methods and criteria
unspecified
Recommended literature
  • Aktuální odborné články v mezinárodních matematických časopisech.
  • C. Robinson. (1995). Dynamical Systems. CRC Press, Boca Raton.
  • D.K. Arrowsmith, C.M. Place. (1991). An Introduction to Dynamical Systems. Cambridge Univ. Press, Cambridge.
  • F. Verhulst. (1990). Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag.
  • H.O. Peitgen, H. Jurgens, D.Saupe. (1992). Chaos and Fractals. Springer, Berlin.
  • J. Guckenheimar, P. Holmes. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York.
  • J. Hale, H. Kocak. (1991). Dynamics and Bifurcations. Springer-Verlag, New York.
  • J.H. Hubbart, B.H. West. Differential Equations: A Dynamical Systems Approach I, II. Springer-Verlag, New York, 1991, 1995.
  • Katok, A., Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge.
  • L.Perko. (1991). Differential Equations and Dynamical Systems. Springer-Verlag, New York.
  • S.N. Chow, J.K. Hale. (1982). Methods of Bifurcation Theory. Springer, Berlin.
  • Steven H. Strogatz. (2014). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boca Raton.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester