| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Tomeček Jan, doc. RNDr. Ph.D.
                
 
            
                - 
                    Andres Jan, prof. RNDr. dr hab. DSc.
                
 
            
                - 
                    Rachůnková Irena, prof. RNDr. DrSc.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        Types of solutions of initial problems.  Existence and uniqueness.  Dependence on initial values and parameters. Linear differential equations. Global properties of solutions.  Stability. Periodic and bounded solutions. Differential inequalities and a priori estimates of solutions. Differential equations with singularities in time and in phase variables. Impulsive differential equations. Functional differential equations.
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Work with Text (with Book, Textbook)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                To master essential tools of the theory of differential euquations.
                 
                Comprehension Demonstrate a good orientation ín the theory of differential equations.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Master degree in mathematics.
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam
                        
                        
                         
                        
                    
                    
                
                 Oral exam. To master essential tools of the theory of differential euquations.
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Aktuální odborné články v mezinárodních matematických časopisech. 
                
 
            
                
                - 
                    Andres, J., Gorniewicz, L. (2003). Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht. 
                
 
            
                
                - 
                    I.T. Kiguradze. (1975). Some Singular Boundary Value Problems for Ordinary Differential Equations. Izd. Tbilis. Univ. , Tbilisi. 
                
 
            
                
                - 
                    J. Kalas, M. Ráb. (1995). Obyčejné diferenciální rovnice. Brno. 
                
 
            
                
                - 
                    J.H. Hubbart, B.H. West. Differential Equations: A Dynamical Systems Approach I, II. Springer-Verlag, New York, 1991, 1995. 
                
 
            
                
                - 
                    M. Greguš, M. Švec, V. Šeda. (1985). Obyčajné diferenciálne rovnice. Alfa, SNTL. 
                
 
            
                
                - 
                    P. Hartman. (1964). Ordinary Differential Equations. John Wiley and Sons, New York. 
                
 
            
                
                - 
                    Wirkus, Stephen A., Swift. Randall J. (2015). A course in ordinary differential equations. Boca Raton, Fla. : CRC Press. 
                
 
            
         
         
         
     |