| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Ženčák Pavel, RNDr. Ph.D.
                
 
            
                - 
                    Bebčáková Iveta, Mgr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Fundamentals of integral calculus: Indefinite integral, the Riemann integral, application in determination of curve length, area, surface and volume of a solid of revolution.  2. Functions of two variables: Partial derivative, local extremes, differential.  3. Introduction to differential equations: First order ordinary differential equations.  4. Fundamentals of numerical mathematics: Numerical solving of equations with one unknown variable - iterative method. Interpolation, least squares approximation method, differences, numerical differentiation and integration.
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    
        
        Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
            
                    
                
                    
                    - Attendace
                        - 52 hours per semester
                    
 
                
                    
                    - Homework for Teaching
                        - 20 hours per semester
                    
 
                
                    
                    - Preparation for the Course Credit
                        - 40 hours per semester
                    
 
                
                    
                    - Preparation for the Exam
                        - 65 hours per semester
                    
 
                
             
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand the principles ofintegral calculus and theory of differential equations.  
                 
                Comprehension Understand basic principles ofintegral calculus and theory of differential equations.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Differential calculus of functions of one variable. 
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: Passing written tests (i.e. obtaining at least half of the possible points in each test). Exam: Oral exam. 
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    B. Budinský, J. Charvát. (1990). Matematika I. SNTL, Praha. 
                
 
            
                
                - 
                    Bartch H. J. (1983). Matematické vzorce. SNTL, Praha. 
                
 
            
                
                - 
                    J. Kopáček. (2002). Matematická analýza pro fyziky. Matfyzpress. 
                
 
            
                
                - 
                    Klůfa, J., Sýkorová, I. (2023). Učebnice matematiky (2) pro studenty VŠE. Jesenice: Ekopress. 
                
 
            
                
                - 
                    Kolda S., Krajňáková D., Kimla A. (1990). Matematika pro chemiky II. SNTL Praha. 
                
 
            
                
                - 
                    Kolda S., Krajňáková D., Kimla A. (1989). Matematika pro chemiky I. SNTL Praha. 
                
 
            
                
                - 
                    R. A. Adams. (1991). Calculus: A Complete Course. Addision-Wesley Publishers Limited. 
                
 
            
                
                - 
                    Tebbut P. (1995). Basic Mathematics for Chemists. Chichester. 
                
 
            
                
                - 
                    V. Kotvalt. (2003). Základy matematiky pro biologické obory. Karolinum, Praha. 
                
 
            
         
         
         
     |