| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Fürst Tomáš, RNDr. Ph.D.
                
 
            
                - 
                    Tomeček Jan, doc. RNDr. Ph.D.
                
 
            
                - 
                    Ludvík Pavel, RNDr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Lebesgue measure and integral. 2. Limits, sums and differentiation after the integral sign. 3. Fubini's Theorem and integration by substitution. 4. Curve integrals and potential. 5. Surface integrals. 6. Gauss-Ostrogradsky's, Green's and Stokes' Theorems. 7. Introduction to the calculus of variation
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand integral calculus of functions of several variables
                 
                Comprehension Understand integral calculus of functions of several variables. 
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Differential calculus of functions of several variables, integration on the real axis.
                
                
                    
                    
                        
                         
                        KMA/MA2
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: active participation, the student has to pass two written tests (i.e. to obtain at least half of the possible points in each test). Exam: Understand the subject and be able to prove the most important results
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Kopáček, J. (2007). Matematická analýza nejen pro fyziky (III). Matfyzpress, Praha. 
                
 
            
                
                - 
                    Kopáček, J. (2015). Matematická analýza nejen pro fyziky (II). Matfyzpress, Praha. 
                
 
            
                
                - 
                    Kopáček, J. (2006). Příklady z matematiky nejen pro fyziky III. Matfyzpress, Praha. 
                
 
            
                
                - 
                    R. Feynman. (2005). The Feynman Lectures on Physics. Addison Wesley. 
                
 
            
                
                - 
                    Stewart, J. (2015). Multivariable Calculus. Brooks Cole. 
                
 
            
         
         
         
     |