| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Krajščáková Věra, Mgr.
                
 
            
                - 
                    Tomeček Jan, doc. RNDr. Ph.D.
                
 
            
                - 
                    Rachůnková Irena, prof. RNDr. DrSc.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Modelling using dynamical systems. 2. Linear systems, classification. 3. Nonlinear systesm, local theory. Stability. 4. Gradient and hamiltonian systems. 5. 2D models: Bifurcations and limit cycles (Poincaré-Bendixson theory), Lotka-Volterra model, pendulum, oscilators. 6. 3D models: chaos and strange attractors (Rosler, Lorenz).
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Lecture
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand basic notions concerning dynamical systems.
                 
                Comprehension Understand basic notions concerning dynamical systems.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Differential and integral calculus.
                
                
                    
                    
                        
                         
                        KMA/MA1  and  KAG/LA1A
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Seminar Work
                        
                        
                         
                        
                    
                    
                
                 Oral exam. Credits: defense of the seminal work
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Online přednáška. 
                
 
            
                
                - 
                    F. Verhulst. (1990). Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin. 
                
 
            
                
                - 
                    J. Hale, H. Kocak. (1991). Dynamics and Bifurcation. Springer-Verlag, New York. 
                
 
            
                
                - 
                    Katok, A.; Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge. 
                
 
            
                
                - 
                    Rachůnková, J. Fišer. (2014). Dynamické systémy 1. UP v Olomouci, Olomouc. 
                
 
            
                
                - 
                    S. Strogatz. (2014). Nonlinear Dynamics and Chaos, With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). Avalon Publishing. 
                
 
            
         
         
         
     |