| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Czolková Adéla, Bc.
                
 
            
                - 
                    Vencálek Ondřej, doc. Mgr. Ph.D.
                
 
            
                - 
                    Fačevicová Kamila, Mgr. Ph.D.
                
 
            
                - 
                    Pavlů Ivana, Mgr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Specifics of time series analysis, evaluation of prediction quality. 2. Modeling of time series trends using mathematical curves: constant, linear, quadratic trend, exponential, shifted exponential, logistic, Gompertz trend. 3. Adaptive methods for time series trend modeling - moving averages method, exponential smoothing. 4. Modeling the seasonal component of time series - regression approach, model of hidden periods, Holt-Winters method. 5. Random component analysis (randomness tests). 6. Box-Jenkins methodology: MA, AR, ARMA, ARIMA, and SARIMA processes.
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                The aim is to acquaint students with the basic procedures in the analysis of time series.
                 
                The student will be able to independently analyze a time series, make a prediction in this time series and evaluate the quality of this prediction.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Basics of probability theory and statistics.
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Seminar Work
                        
                        
                         
                        
                    
                    
                
                 Credit: active participation, seminar work Exam: oral
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Arlt, J., Arltová, M. (2007). Ekonomické časové řady. Grada, Praha. 
                
 
            
                
                - 
                    Cipra, T. (1986). Analýza časových řad s aplikacemi v ekonomii. SNTL, Praha. 
                
 
            
                
                - 
                    Hindls R., Hronová S., Seger J., Fischer J. (2007). Statistika pro ekonomy. Professional Publishing. 
                
 
            
                
                - 
                    Hyndman, R.J., Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast package for R. Journal of Statistical Software, 27(3). 
                
 
            
                
                - 
                    Tetlock, P. E., Gardner, D. (2016). Superprognózy ? umění a věda předpovídání budoucnosti. Jan Melvil, Brno. 
                
 
            
         
         
         
     |