| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Ševčíková Paulína, Mgr.
                
 
            
                - 
                    Fišerová Eva, doc. RNDr. Ph.D.
                
 
            
                - 
                    Vencálek Ondřej, doc. Mgr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Time series and random process, classification, approaches to model building. 2. Possibilities of General Linear Model in describing a trend. 3. Moving average of a general order. 4. Double exponential smoothing, comparison with simple smoothing. 5. Seasonal models, elaboration. 6. Derivation of the Model of Hidden Periodicities; periodogram and Fisher's test. 7. Box&Jenkins' approach, basic notions. 8. Moving Average process. 9. Autoregressive process. 10. General ARMA process. 11. Identification and verification. 
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Lecture, Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Applying various methods of time-series analysis, development of statistical models.
                 
                Application Applying various methods of time-series analysis, development of statistical models. 
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Basic knowledge of probability theory and mathematical statistics.
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: active participation in seminars, the student has to turn in individual homework Exam: the student has to present knowledge and understanding of the theory and methods
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    D. Gardner a P. E. Tetlock. (2016). Superprognózy: Umění a věda předpovídání budoucnosti. Jan Melvil. 
                
 
            
                
                - 
                    H. Kantz, T. Schreiber. (2004). Nonlinear time series analysis. Cambridge University Press. 
                
 
            
                
                - 
                    J. Arlt, M. Arltová. (2009). Ekonomické časové řady. Professional Publishing. 
                
 
            
                
                - 
                    S. de Kok. (2016). The Future is Uncertain. [online]. 
                
 
            
                
                - 
                    T. Cipra. (1986). Analýza časových řad s aplikacemi v ekonomii. SNTL, Praha. 
                
 
            
         
         
         
     |