Course: Mathematical Background of Maps

» List of faculties » PRF » KGI
Course title Mathematical Background of Maps
Course code KGI/PGMAT
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 10
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Voženílek Vít, prof. RNDr. CSc.
  • Talhofer Václav, doc. Ing. CSc.
Course content
The mathematical basis of terrain models. Tasks of mathematical cartography in creating a mathematical-geometric basis of terrain models. Overview of coordinate systems on reference surfaces and in the display plane. The concept and characteristics of distortion, practical consequences for displaying objects and phenomena, the relationship of distortion and map scale. Types of distortion. Displaying a reference ellipsoid on a sphere. Basic characteristics, their properties, basic relations and formulas, main areas of their use. Simple views. Basic characteristics, their properties, basic relations and formulas, main areas of their use. False and general views. Basic characteristics, their properties, basic relations and formulas, main areas of their use. Gaussian representation. Basic display characteristics, use of images in S-1942/83 and WGS84. Krovak display in S-JTSK. Basic characteristics of the display, use of images in state administration of the Czech Republic. Transform between views. Principle, methods, practical solutions. Application Views in GIS Tools.

Learning activities and teaching methods
Lecture
Learning outcomes
Learning outcomes of the course unit The aim of the course is to acquaint students with the fundamentals of mathematical cartography, with the principles of derivation of imaging equations of individual groups of images and to practically teach them the analysis, selection and use of advantageous types of display for presentation of geographic data in paper and electronic versions, including applications in web map services. An integral part of the course are also ways of transforming spatial coordinates between different types of images.

Prerequisites
unspecified

Assessment methods and criteria
Oral exam

Recommended literature
  • Nařízení vlády ČR č. 430/2006 Sb., o stanovení geodetických systémů a státních mapových děl závazných na území státu a zásadách jejich používání.
  • Bandrova, T. Kartografija 1 (Kartni proekcii). UASG Sofia, 235 s.
  • Böhm, J. (1966). Vyšší geodesie II, Souřadnicové soustavy, učební texty vysokých škol. České vysoké učení technické v Praze, SNTL Praha, 186 s.
  • Buchar, P. (2002). Matematická kartografie 10. ČVUT Praha.
  • Čechurová, M., Veverka, B. (2007). Software MATKART - současný stav a vývojové trendy. Kartografické listy, Ročenka kartografickej spoločnosti SR, č. 15/2007, Bratislava, s. 34-40.
  • Fiala, F. (1955). Matematická kartografie. SNTL Praha.
  • Grafarend, E. W. & Krumm, F. W. (2006). Map Projections: Cartographic Information System. Heidelberg: Springer-Verlag.
  • Hojovec, V. a kol. (1987). Kartografie. GKP, Praha, 660 s.
  • Kennedy, M., Kopp, S. (2000). Understanding Map Projection. ESRI.
  • Kratochvíl, V. (2000). Polohové geodetické sítě, Aplikace metody nejmenších čtverců a transformace souřadnic. VA v Brně, PČT S-464, 214 s.
  • Kuska, F. (1960). Matematická kartografia. SVTL, Edicia technickej literatúry, Bratislava, 475 s.
  • Snyder, J. P. (1987). Map Projections - A Working Manual. Washington, USA: U.S. Geological Survey.
  • Srnka, E. (1986). Matematická kartografie. Vojenská akademie Antonína Zápotockého, 302s., 1. vydání.
  • Talhofer, V. (2007). Základy matematické kartografie. UO FVT Brno.
  • Vykutil, J. (1982). Vyšší geodézie. Kartografie, Praha, 544 s.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester