<lo> <li>  Sets, relations between sets;  properties of relations;  mappings.          Ordered sets, equivalence relations, decompositions. <li>  Structures with a single operation and their substructures ? groupoids, halfgroups, neutral          element, inverse element, subgroupoids. Groups, subgroups. <li>  Structures with two operations and their substructures ? rings, subrings, domains.          Fields, subfields, numbers fields. <li>  Vector spaces over number fields ? subspaces;  subspaces generated by vectors.          Linear combination of vectors, linear hull;  dimension and basis of a vector space,          vector coordinates. <li>  Matrices and determinants ? definitions, computing rules for determinants.          Sum of matrices, scalar multiple of a matrix, matrix multiplication.          Inverse of a matrix and its computing, rank of a matrix . <li>  Systems  of linear equations ? introduction, solvability.           Gauss elimination method, The Frobenius Theorem, Cramer?s rule.          Homogeneous systems of linear equations. </lo>
         
         
     | 
    
        
            
                
                - 
                    Bečvář J. (2005). Lineární algebra. Praha. 
                
 
            
                
                - 
                    Bican L. (2000). Lineární algebra a geometrie. Praha, Academia. 
                
 
            
                
                - 
                    Horák P. (2006). Cvičení z algebry a teoretické aritmetiky. MU Brno. 
                
 
            
                
                - 
                    Hort D., Rachůnek J. (2003).  Algebra I. UP Olomouc. 
                
 
            
                
                - 
                    Kuiper, N.H. (2016). Linear Algebra and Geometry. Haerbin gong ye da xue chu ban she. 
                
 
            
                
                - 
                    Poole, D. (2014). Linear Algebra: A Modern Introduction. Cengage Learning. 
                
 
            
                
                - 
                    Skalská D. (2004). Algebra. UP Olomouc. 
                
 
            
                
                - 
                    Skalská D. (2004). Lineární algebra. UP Olomouc. 
                
 
            
                
                - 
                    Szidarovszky F.,Molnar S. (2002). Introduction to Matrix Tudory with Applications to Business and Economics. World Scientific, New Persey. 
                
 
            
         
         
         
     |