Sets, relations between sets; properties of relations; mappings. Ordered sets, equivalence relations, decompositions. Structures with a single operation and their substructures ? groupoids, halfgroups, neutral element, inverse element, subgroupoids. Groups, subgroups. Structures with two operations and their substructures ? rings, subrings, domains. Fields, subfields, numbers fields. Vector spaces over number fields ? subspaces; subspaces generated by vectors. Linear combination of vectors, linear hull; dimension and basis of a vector space, vector coordinates. Matrices and determinants ? definitions, computing rules for determinants. Sum of matrices, scalar multiple of a matrix, matrix multiplication. Inverse of a matrix and its computing, rank of a matrix . Systems of linear equations ? introduction, solvability.  Gauss elimination method, The Frobenius Theorem, Cramer?s rule. Homogeneous systems of linear equations. 
         
         
     | 
    
        
            
                
                - 
                    Bečvář, J. (2010). Lineární algebra. Praha: Matfyzpress. 
                
 
            
                
                - 
                    Bican, L. (2009). Lineární algebra a geometrie. Praha: Academia. 
                
 
            
                
                - 
                    Daniel Hort, Jiří Rachůnek. (2003). Algebra I. UP Olomouc. 
                
 
            
                
                - 
                    Horák P. (2006). Cvičení z algebry a teoretické aritmetiky. MU Brno. 
                
 
            
                
                - 
                    Kuiper, N.H. (2016). Linear Algebra and Geometry. Haerbin gong ye da xue chu ban she. 
                
 
            
                
                - 
                    Poole, D. (2014). Linear Algebra: A Modern Introduction. Cengage Learning. 
                
 
            
                
                - 
                    Skalská D. (2004). Algebra. UP Olomouc. 
                
 
            
                
                - 
                    Skalská D. (2004). Lineární algebra. UP Olomouc. 
                
 
            
                
                - 
                    Szidarovszky F.,Molnar S. (2002). Introduction to Matrix Tudory with Applications to Business and Economics. World Scientific, New Persey. 
                
 
            
         
         
         
     |