Název předmětu | Matematika 1 |
---|---|
Kód předmětu | KAG/MA1AA |
Organizační forma výuky | Přednáška + Cvičení |
Úroveň předmětu | Bakalářský |
Rok studia | nespecifikován |
Semestr | Letní |
Počet ECTS kreditů | 5 |
Vyučovací jazyk | Čeština |
Statut předmětu | nespecifikováno |
Způsob výuky | Kontaktní |
Studijní praxe | Nejedná se o pracovní stáž |
Doporučené volitelné součásti programu | Není |
Vyučující |
---|
|
Obsah předmětu |
1. Základy matematické logiky, důkazy matematických vět. 2. Relace, ekvivalence a uspořádání na množině, zobrazení množin, základní algebraické struktury. 3. Matice, operace s maticemi (součet, součin, násobení reálným číslem). 4. Pořadí, permutace, determinanty. 5. Vektorové prostory, podprostory, přímý součet podpostorů, báze vektorových prostorů. 6. Eukleidovské vektorové prostory, ortogonální a ortonormální báze, Schwarzova nerovnost, Schmidtova ortogonalizační metoda. 7. Hodnost matice, řešení soustav homogenních i nehomogenních lineárních rovnic, Frobeniova věta, Gaussova eliminační metoda, Cramerovo pravidlo. 8. Okruh čtvercových matic, metody výpočtu inverzní matice. 9. Lineární zobrazení a transformace, jejich matice, základní vlastnosti a příklady.
|
Studijní aktivity a metody výuky |
nespecifikováno |
Výstupy z učení |
Porozumět základům lineární algebry, zvládnout řešení typových úloh.
Studenti získají schopnost aplikovat poznatky lineární algebry při řešení matematických problémů. |
Předpoklady |
nespecifikováno
|
Hodnoticí metody a kritéria |
nespecifikováno
Zápočet: ze cvičení. Zkouška: písemná. |
Doporučená literatura |
|
Studijní plány, ve kterých se předmět nachází |
Fakulta | Studijní plán (Verze) | Kategorie studijního oboru/specializace | Doporučený semestr |
---|