| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Janek Vojtěch, Mgr.
                
 
            
                - 
                    Vítková Lenka, Mgr. Ph.D.
                
 
            
                - 
                    Calábek Pavel, RNDr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Number sets, supremum, infimum.  2. Number sequences, monotonicity, limits.  3. Functions and their characteristics, composite and inverse functions.  4. Limits of functions, continuity.  5. Differential calculus: Differentiation, the differential of a function, fundamental theorems, course of a function.
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand the mathematical tools of differential calculus of functions of a single variable. 
                 
                Comprehension Understand the mathematical tools of differential calculus of functions of a single variable.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                unspecified
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: the student has to turn in all pieces of homework and obtain at least 50% of points in every short test during the semester or at least half of the possible points in the final (long) test. Exam:
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    G. S. Simmons. (2005). Calculus With Analytic Geometry. McGraw-Hill. 
                
 
            
                
                - 
                    J. Brabec, B. Hrůza. (1989). Matematická analýza II. SNTL Praha. 
                
 
            
                
                - 
                    J. Brabec, F. Martan, Z. Rozenský. (1989). Matematická analýza I. Praha: SNTL. 
                
 
            
                
                - 
                    Jarník V. (1984). Diferenciální počet I. Akademia Praha. 
                
 
            
                
                - 
                    Jarník V. (1984). Integrální počet I. Academia Praha. 
                
 
            
                
                - 
                    Novák V. (1988). Diferenciální počet v R.. UJEP Brno. 
                
 
            
                
                - 
                    P. Calábek, J.Švrček, S. Trávníček. Matematická analýza I a II (pro učitelské obory). 
                
 
            
         
         
         
     |