| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Mikeš Josef, prof. RNDr. DrSc.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Vector functions 2. Parametrization of curves. Orientation. Means of determinacy of curves. 3. Length of a curve, natural parameter. 4. Tangent, osculating plane, moving Frenet frame  5. Frenet formulae, curvature, torsion. Natural equations of a curve. Conditions for differentiability.  6. Contact of curves, osculating circle 7. Conics 8. Parametrization of surfaces. Means of determinacy of surfaces. 9. Tangent, tangential plane, normal of a surface 10. First and second fundamental form of a surface.  11. Messnier formulae and theorem 12. Principal directions. Normal, geodetic, principal, mean, Gauss curvature. Euler formulae. 13. Gauss and Weiengarten formulae.  14. Gauss and  Peterson-Codazzi-Mainardi formulae. Christoffel symbols. 15. Theorem Egregium. 16. Special curves on a surface. 17. Special surfaces (developable, constant curvature, rotational) 18. Surfaces of the second order 19. Differentiable manifold, affine connection, Riemannian manifold 20. Variation problem, geodesics. Isoparametric curves. 
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand theory of curves and surfaces.
                 
                1. Knowledge Understanding of principles of the diffential geometry on curves and surfaces.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                unspecified
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: active participation on laboratory and succesfull to pass test.  Exam: the student has to undrestand the subject and be able to prove the principal results.
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Berger, M. (1987). Geometry I, II. Universitext Springer-Verlag Berlin. 
                
 
            
                
                - 
                    Budínský, B., Kepr, B. (1970). Základy diferenciální geometrie s technickými aplikacemi. SNTL Praha. 
                
 
            
                
                - 
                    Doupovec, M. (1999).  Diferenciální geometrie a tenzorový počet. VUT Brno. 
                
 
            
                
                - 
                    Gray, A. (1994). Differential geometry. CRC Press Icn. 
                
 
            
                
                - 
                    Gray, A. (2006). Modern Differential Geometry of Curves and Surfaces.. Chapman \& Hall/CRC, Boca Raton, FL. 
                
 
            
                
                - 
                    J. Mikeš, E. Stepanova, A. Vanžurová et al. (2015). Differential geometry of special mappings. UP Olomouc. 
                
 
            
                
                - 
                    J. Mikeš, M. Sochor. (2013). Diferenciální geometrie ploch v úlohách. UP OLomouc. 
                
 
            
                
                - 
                    Kolář, I., Pospíšilová, L. (2007). Diferenciální geometrie křivek a ploch. El. publ. MU Brno. 
                
 
            
                
                - 
                    Metelka, J. (1969). Diferenciální geometrie. SPN Praha. 
                
 
            
                
                - 
                    Mikeš, J., Kiosak, V., Vanžurová, A. (2008). Geodesic mappings of manifolds with affine connection. UP Olomouc. 
                
 
            
                
                - 
                    Oprea, J. (2007). Differential geometry and its aplications. MAA Pearson Educ. 
                
 
            
         
         
         
     |