| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Peška Patrik, RNDr. Ph.D.
                
 
            
                - 
                    Mikeš Josef, prof. RNDr. DrSc.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Vector functions. | 2. Methods of definitions of curves. | 3. Length of a curve,  natural parameter. | 4. Frenet's reper and equations.  | 5. Contact of curves, osculation circle. 6. Methods of definitions of  surfaces. 7. Tangent plane and normal of  surface. | 8. First and second fundamental forms of the surface. Meussnier theorem. 9. Curvature of surface. Euler's formula. | 10. Gauss and Weiengarten formulas, Egregium theorem. 11. Special curves on the surface. 12. Special surfaces. 13. Differentiaable manifolds, affine connection, Riemann manifolds.
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        
        
        
        unspecified
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                
                 
                1. Knowledge Recall properties of important curves (main, asymptotic, geodesic) on surfaces and the role of geodesics for mechanics. 
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                unspecified
                
                
                    
                    
                        
                         
                        KAG/AGN
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                    
                        unspecified
                    
                
                 Credit: the student has to pass two written tests (i.e. to obtain at least half of possible points in each test). Exam: the student has to understand the subject and be able to use the theory in applications. 
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Budinský B., Kepr B. (1970).  Základy diferenciální geometrie s technickými aplikacemi. SNTL Praha. 
                
 
            
                
                - 
                    Doupovec, M. (1999).  Diferenciální geometrie a tenzorový počet. VUT Brno. 
                
 
            
                
                - 
                    Gray A. (1994).  Differential geometry. CRC Press Inc. 
                
 
            
                
                - 
                    J. Mikeš, E. Stepanova, A. Vanžurová et al. (2015). Differential geometry of special mappings. UP Olomouc. 
                
 
            
                
                - 
                    J. Mikeš, M. Sochor. (2013). Diferenciální geometrie ploch v úlohách. UP OLomouc. 
                
 
            
                
                - 
                    Metelka, J. (1969). Diferenciální geometrie. SPN Praha. 
                
 
            
         
         
         
     |