| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Emanovský Petr, doc. RNDr. Ph.D.
                
 
            
                - 
                    Ševčík Petr, Mgr.
                
 
            
                - 
                    Lachman Dominik, Mgr.
                
 
            
                - 
                    Kurač Zbyněk, Mgr.
                
 
            
                - 
                    Riemel Tomáš, Mgr.
                
 
            
                - 
                    Vítková Lenka, Mgr. Ph.D.
                
 
            
                - 
                    Křížek Jan, Mgr.
                
 
            
                - 
                    Cenker Václav, Mgr.
                
 
            
                - 
                    Botur Michal, doc. Mgr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        1. Introduction: Elements of mathematical logic, sets, relations, mappings, algebraic structures. 2. Matrices: Operations with matrices, vector space of matrices, ring of square matrices. Determinants: Definition, calculation of determinants. 3. Systems of equations: Homogeneous and nonhomogeneous systems and their solutions, the Frobenius theorem, Gauss elimination, the Cramer rule. 4. Vector spaces: Subspace, subspace generated by a set, basis, dimension. 5. Affine spaces, affine coordinates, affine subspaces, expression of subspaces by means of equations, relative position of affine subspaces.  6. Homomorphisms and isomorphisms of vector spaces: Arithmetical vector spaces and their importance for description of vector spaces, coordinates of vectors according to a given basis, transformation of coordinates as consequense of change of basis, matrix of transformation, matrix of endomorphism. 7. Inner product spaces: Inner product, length of a vector, angle between vectors, orthogonal and orthonormal basis, Gram-Schmidt orthogonalization, isomorphism of inner product spaces. 8.Oriented affine lines, ordered affine lines, half-lines, abscissas. Oriented affine spaces, half-spaces.  9. Euclidean spaces, metric, distance of subspaces. Angle of subspaces.  
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    | 
        
        Lecture, Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Understand the principles linear algebra.
                 
                1. Knowledge List of the fundamental knowledge from the algebra for students of the physical courses.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                unspecified
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Oral exam, Written exam
                        
                        
                         
                        
                    
                    
                
                 Credit: the student has to participate in seminars actively and do homework assignments. He/She has to pass a written test successfuly. Exam: the student has to pass a written part successfuly. He/She has to understand the problems and interpret them correctly. 
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Bartsch, H. J. (1996). Matematické vzorce. Praha: Mladá fronta. 
                
 
            
                
                - 
                    Bican, L. (2009). Lineární algebra a geometrie. Praha: Academia. 
                
 
            
                
                - 
                    Bican L. (1979). Lineární algebra. SNTL Praha. 
                
 
            
                
                - 
                    Borůvka O. (1971). Základy teorie matic. Academia Praha. 
                
 
            
                
                - 
                    Hort D., Rachůnek, J. (2005). Algebra I. Olomouc. 
                
 
            
                
                - 
                    Jukl M. (2006). Lineární algebra. UP Olomouc. 
                
 
            
                
                - 
                    JUKL Marek. Analytická geometrie. Olomouc. 
                
 
            
                
                - 
                    K. Rektorys. (1963). Přehled užité matematiky. SNTL Praha. 
                
 
            
                
                - 
                    Klucký D. (1989). Kapitoly z lineární algebry I. UP Olomouc. 
                
 
            
         
         
         
     |