|
Lecturer(s)
|
-
Dofková Radka, doc. PhDr. Ph.D.
-
Zdráhal Tomáš, doc. RNDr. CSc.
|
|
Course content
|
The course builds predicate calculus (quantifiers, formula, tautology), and the notion of mathematical theory (language, axioms, theorems, definitions, proofs of mathematical theorems
|
|
Learning activities and teaching methods
|
|
Monologic Lecture(Interpretation, Training)
|
|
Learning outcomes
|
This follows the propositional calculus and builds the predicate calculus (quantifiers, formulas, tautology) and the concept of mathematical theory (language, axioms, theorems, definitions, proofs of theorems).
|
|
Prerequisites
|
unspecified
|
|
Assessment methods and criteria
|
Seminar Work
To understand mathematical theories as such, to be able to use theoretical knowledge of proofs.
|
|
Recommended literature
|
-
BLAŽEK J., VOJTÁŠKOVÁ B. Teorie množin, UJEP Ústí n.L. 1994.
-
KOPECKÝ, M. Základy algebry. Olomouc: VUP 1998. ISBN 80-244-0683-7.
|