Course description

Course abbreviation: Course name:	SLO/OS Optical Sensor	rs				Page:	1 / 2		
Academic Year:	2015/2016				Printed:	03.06.2024	08:06		
Department/Unit /	SLO / OS				Academic Year	2015/2016			
Title	Optical Sensors				Type of completion	Colloquiur	n		
Accredited/Credits	Yes, 3 Cred.				Type of completion				
Number of hours	Přednáška 2 [Hours/Week]								
Occ/max	Status A	Status B	Status C		Course credit prior to	NO			
Summer semester	0 / -	0 / -	0 / -		Counted into average	NO			
Winter semester	0 / -	0 / -	0 / -		Min. (B+C) students	not determ	ined		
Timetable	Yes				Repeated registration	NO			
Language of instruction					Semester taught		nester		
Optional course					Internship duration	0			
Evaluation scale	S N								
No. of hours of on-premise									
Auto acc. of credit	No								
Periodicity	K								
Substituted course	None								
Preclusive courses									
Prerequisite courses		1							
Informally recomm									
Courses depending	on this Course	N/A							

Course objectives:

The aim is to give students information about selected optical sensors based on different optical principles (triangulation, intereference, time and spatial coherence, speckle and holography).

Requirements on student

Class attendance

Knowledge of the course topics, ability to discuss about the course topics in wider contexts

Content

1. Basic definitions - definition of optically smooth and optically rough surface, definition of the problem of the measurement, explanation of the coherent speckle, explanation of the meaning of characteristic quantities

2. Classification of optical sensors according to the principle - triangulation (laser triangulation, triangulation with measurement of phase, deflectometry with measurement of phase, autofocusing), interferometry in white light (interferometry in white light in time domain, interferometry in white light with spectral splitting (in frequency domains, optical coherent tomography (OCT)), classical interferometry

3. Interferometric methods with synthesis of coherent function, interferometry using spatial coherence

4. Holographic interferometry

5. Interferometry based on coherent speckle, photography based on coherent speckle, correlation interferometry, electronic correlation interferometry (ESPI)

6. Method using correlation properties of fields of coherent speckle - measurement of component of small deformation tensor of the object and the quantities derived from these components

Prerequisites - other information about course preconditions

Prior knowledge of the undergraduate physics. At least 3 participating students.

Competences acquired

Comprehension

Recognize optical sensors according to the principle, explain principle of selected optical sensors (based on interference, holography, and speckle) and state examples of their applications.

Fields of study

Guarantors and lecturers

 Guarantors: 	prof. RNDr. Miroslav Hrabovský, DrSc. (100%)							
• Lecturer:	RNDr. Pavel Horváth, Ph.D. (100%), doc. RNDr. Pavel Pavlíček, Ph.D. (100%), RNDr. Petr Šmíd, Ph.D.							
	(100%)							

Literature

• Recommended:	Miler M. Holografie. SNTL Praha, 1974.
• Recommended:	Jones R., Wykes C. <i>Holographic and Speckle Interferometry</i> . Cambridge University Press, Cambridge, 1989.
• Recommended:	Hrabovský M., Bača Z., Horváth P. <i>Koherenční zrnitost v optice</i> . UP Olomouc, 2001.
• Recommended:	Dorsch R., Häusler G., Herrmann J. Laser triangulation: Fundamental uncertainty of measurement, <i>App. Opt.</i> 33, 1306 - 1314. 1994.
• Recommended:	Gruber M., Häusler G. Simple, robust and accurate phase-measuring triangulation, Optik 89, 118 - 122. 1992.
• Recommended:	Goodman J.W. <i>Speckle phenomena in optics: theory and applications</i> . Roberts and Company Publishers, Greenwood Village, 2007.
• Recommended:	Dresel T., Häusler G., Venzke H. Three-dimensional sensing of rough surfaces by coherence radar, <i>Appl. Opt. 31, 919 - 925.</i> 1992.

Time requirements

All	forms	of	study	
-----	-------	----	-------	--

Activities		Time requirements for activity [h]				
Homework for Teaching		20				
Preparation for the Course Credit		44				
Attendace		26				
	Total:	90				

Teaching methods

Monologic Lecture(Interpretation, Training)

Assessment methods

Mark

Course is included in study programmes:

Study Programme	Type of	Form of	Branch	Stage S	t. plan	v. Year	Block	Status	R.year	R.
Physics	Postgraduat e Master	Full-time	Applied Physics	1	1	2015	Volitelné předměty	С	2	ZS