Course: Solid State Physics

« Back
Course title Solid State Physics
Course code SLO/FN-E
Organizational form of instruction Lecture + Lesson
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction English
Status of course Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Soubusta Jan, doc. Mgr. Ph.D.
Course content
1. Spatial configuration of a crystal, crystal lattice, primitive cell. 2. Crystal diffraction, reciprocal lattice, Bragg diffraction law, Brillouin zone. 3. Crystal bonding, ionic crystals, covalent crystals, metals, crystals of inert gases. 4. Lattice vibrations, acoustical, optical phonons, dispersion relations, thermal properties. 5. Metals, Fermi gas of free electrons, thermal and electrical properties. 6. Energy bands, Bloch theorem, Bloch functions, central equation. 7. Semiconductors, dispersion relations of real materials (Si, Ge, GaAs). 8. Fermi surfaces in metals, nearly free electron approximation, tight binding method. 9. Quasiparticles, plasmons, polaritons, excitons. 10. Advanced topics, superconductivity, electric and magnetic properties.

Learning activities and teaching methods
Lecture, Projection (static, dynamic), Activating (Simulations, Games, Dramatization)
  • Preparation for the Exam - 72 hours per semester
  • Attendace - 52 hours per semester
  • Homework for Teaching - 26 hours per semester
Learning outcomes
Brief introduction to solid state physics.
Knowledge Describe basic properties of solids, describe basic laws of physics of solids.
Prerequisites
Not specified.

Assessment methods and criteria
Oral exam

Knowledge of taught topics
Recommended literature
  • Ashcroft N.W., Mermin N.D. (1976). Solid State Physics. Brooks Cole.
  • C. Kittel. Úvod do fyziky pevných látek (č. překlad ACADEMIA Praha, 1985)..
  • C. Klingshirn. Semiconductor Optics (Springer, 2nd edition 2005)..
  • Celý J. (2004). Kvazičástice v pevných látkách. Vutium, Brno.
  • De Graef M., McHenry M.E. (2007). Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry. Cambridge University Press.
  • E. Majerníková. Fyzika pevných látek (skripta UP Olomouc, 1999)..
  • Eckertová L. a kol. (1992). Fyzikální elektronika pevných látek. Karolinum UK Praha.
  • J. Kvasnica. Matematický aparát fyziky (ACADEMIA, Praha, 2. edice 2004)..
  • Mihaly L., Martin M.C. Solid State Physics: Problems and Solutions. Wiley-VCH.
  • Pierret R.F. (2003). Advanced semiconductor fundamentals. Pearson Education, 2nd edition.
  • P.Y. Yu, M. Cordona. Fundamentals of Semiconductors, Physics and Material Properties (Springer, 3rd edition 2001)..
  • Razeghi M. (2009). Fundamentals of Solid State Engineering. Springer.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Physics (2019) Category: Physics courses - Recommended year of study:-, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Nanotechnology (2019) Category: Special and interdisciplinary fields - Recommended year of study:-, Recommended semester: Winter